Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Phys Lipids. 1999 Nov;102(1-2):107-21.

Functional analysis of acid and neutral sphingomyelinases in vitro and in vivo.

Author information

  • Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, Köln, Germany. wilhelm.stoffel@uni-koeln.de

Abstract

The molecular cloning and the elucidation of the gene structures of the acid (aSMase) and a neutral sphingomyelinases (nSMase) of mouse and human facilitated the structural and functional analysis of these enzymes responsible for the catabolism of sphingomyelin present ubiquitously in the membrane lipid bilayer of mammalian cells. The protein and enzymic properties of the glycoprotein aSMase and of a non-glycosylated nSMase residing in the membranes of the endoplasmic reticulum have been analysed in the native as well as in the recombinant shingomyelinases. Important insight was gained from gene targeting experiments in which an aSMase deficient mouse line was generated which mimics the neurovisceral form of the human Niemann-Pick disease. The availability of the cloned aSMase and nSMases discovered so far led to a genetic approach to the verification of the concept that these enzymes in the 'sphingomelin cycle' are responsible for the generation of ceramide regarded as a lipophilic second messenger in the intracellular signal cascades activated by e.g. TNF-alpha, Fas ligand or cellular stress. All the available evidence derived from the aSMase deficient mouse line and several cell lines overexpressing aSMase and nSMase questions a role of ceramide released by the mammalian sphingomyelinases known so far in intracellular signal transduction.

PMID:
11001565
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk