Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Nutr Soc. 2000 Aug;59(3):373-84.

Afferent signals regulating food intake.

Author information

  • Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA. BrayGA@pbrc.edu

Abstract

Food intake is a regulated system. Afferent signals provide information to the central nervous system, which is the centre for the control of satiety or food seeking. Such signals can begin even before food is ingested through visual, auditory and olfactory stimuli. One of the recent interesting findings is the demonstration that there are selective fatty acid taste receptors on the tongue of rodents. The suppression of food intake by essential fatty acids infused into the stomach and the suppression of electrical signals in taste buds reflect activation of a K rectifier channel (K 1.5). In animals that become fat eating a high-fat diet the suppression of this current by linoleic acid is less than that in animals that are resistant to obesity induced by dietary fat. Inhibition of fatty acid oxidation with either mercaptoacetate (which blocks acetyl-CoA dehydrogenase) or methylpalmoxirate will increase food intake. When animals have a choice of food, mercaptoacetate stimulates the intake of protein and carbohydrate, but not fat. Afferent gut signals also signal satiety. The first of these gut signals to be identified was cholecystokinin (CCK). When CCK acts on CCK-A receptors in the gastrointestinal tract, food intake is suppressed. These signals are transmitted by the vagus nerve to the nucleus tractus solitarius and thence to higher centres including the lateral parabrachial nucleus, amygdala, and other sites. Rats that lack the CCK-A receptor become obese, but transgenic mice lacking CCK-A receptors do not become obese. CCK inhibits food intake in human subjects. Enterostatin, the pentapeptide produced when pancreatic colipase is cleaved in the gut, has been shown to reduce food intake. This peptide differs in its action from CCK by selectively reducing fat intake. Enterostatin reduces hunger ratings in human subjects. Bombesin and its human analogue, gastrin inhibitory peptide (also gastrin-insulin peptide), reduce food intake in obese and lean subjects. Animals lacking bombesin-3 receptor become obese, suggesting that this peptide may also be important. Circulating glucose concentrations show a dip before the onset of most meals in human subjects and rodents. When the glucose dip is prevented, the next meal is delayed. The dip in glucose is preceded by a rise in insulin, and stimulating insulin release will decrease circulating glucose and lead to food intake. Pyruvate and lactate inhibit food intake differently in animals that become obese compared with lean animals. Leptin released from fat cells is an important peripheral signal from fat stores which modulates food intake. Leptin deficiency or leptin receptor defects produce massive obesity. This peptide signals a variety of central mechanisms by acting on receptors in the arcuate nucleus and hypothalamus. Pancreatic hormones including glucagon, amylin and pancreatic polypeptide reduce food intake. Four pituitary peptides also modify food intake. Vasopressin decreases feeding. In contrast, injections of desacetyl melanocyte-stimulating hormone, growth hormone and prolactin are associated with increased food intake. Finally, there are a group of miscellaneous peptides that modulate feeding. beta-Casomorphin, a heptapeptide produced during the hydrolysis of casein, stimulates food intake in experimental animals. In contrast, the other peptides in this group, including calcitonin, apolipoprotein A-IV, the cyclized form of histidyl-proline, several cytokines and thyrotropin-releasing hormone, all decrease food intake. Many of these peptides act on gastrointestinal or hepatic receptors that relay messages to the brain via the afferent vagus nerve. As a group they provide a number of leads for potential drug development.

PMID:
10997653
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Write to the Help Desk