Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Sep 15;20(18):6927-38.

Local permutations in the glomerular array of the mouse olfactory bulb.

Author information

  • 1The Rockefeller University, New York, New York 10021, USA.


Olfactory sensory neurons expressing a given odorant receptor gene project their axons with great precision to a few specific glomeruli in the olfactory bulb. It is not clear to which extent the positions of these glomeruli are fixed. We sought to evaluate the constancy of the glomerular array in the mouse by determining the relative positions of glomeruli for various odorant receptors, using a method that affords single-axon resolution, and in a large number of bulbs. We used a genetic strategy to visualize neuronal populations that express one of three members of the mOR37 subfamily. We generated by gene targeting five strains of mice in which expression of a given mOR37 gene is linked to expression of an axonal maker, which is either taulacZ or tauGFP. The patterns of marker expression faithfully mimic those of the cognate receptors. Axons of neurons expressing a given mOR37 gene converge onto one or two glomeruli per bulb. Each mOR37 gene has its own glomeruli, and the mOR37 glomeruli are grouped within a restricted domain of the bulb. Serial sectioning of 214 bulbs reveals that the relative positions of the three types of glomeruli are not fixed but display local permutations. Importantly, this is also the case among the two bulbs from one individual, ruling out the genetic manipulation itself and differences in genetic background or olfactory experience as causes for the observed variability. These local permutations may reflect the developmental history of the glomeruli and are relevant for the construction of spatial odor maps.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk