Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bone Miner Res. 2000 Sep;15(9):1669-77.

Interleukin-1beta increases the functional expression of connexin 43 in articular chondrocytes: evidence for a Ca2+-dependent mechanism.

Author information

  • 1Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Universit√† di Trieste, Italy.

Abstract

Cell-to-cell interactions and gap junctions-dependent communication are crucially involved in chondrogenic differentiation, whereas in adult articular cartilage direct intercellular communication occurs mainly among chondrocytes facing the outer cartilage layer. Chondrocytes extracted from adult articular cartilage and grown in primary culture express connexin 43 (Cx43) and form functional gap junctions capable of sustaining the propagation of intercellular Ca2+ waves. Degradation of articular cartilage is a characteristic feature of arthritic diseases and is associated to increased levels of Interleukin-1 (IL-1) in the synovial fluid. We have examined the effects of IL-1 on gap junctional communication in cultured rabbit articular chondrocytes. Incubation with IL-1 potentiated the transmission of intercellular Ca2+ waves and the intercellular transfer of Lucifer yellow. The stimulatory effect was accompanied by a dose-dependent increase in the expression of Cx43 and by an enhanced Cx43 immunostaining at sites of cell-to-cell contact. IL-1 stimulation induced a dose-dependent increase of cytosolic Ca2+ and activates protein tyrosine phosphorylation. IL-1-dependent up-regulation of Cx43 could be prevented by intracellular Ca2+ chelation but not by inhibitors of protein tyrosine kinases, suggesting a crucial role of cytosolic Ca2+ in regulating the expression of Cx43. IL-1 is one of the most potent cytokines that promotes cartilage catabolism; its modulation of intercellular communication represents a novel mechanism by which proinflammatory mediators regulate the activity of cartilage cells.

PMID:
10976987
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk