Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Nov 24;275(47):36653-8.

Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3.

Author information

  • 1Program of Developmental Cardiovascular Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.


Activated macrophages are critical cellular participants in inflammatory disease states. Transforming growth factor (TGF)-beta1 is a growth factor with pleiotropic effects including inhibition of immune cell activation. Although the pathway of gene activation by TGF-beta1 via Smad proteins has recently been elucidated, suppression of gene expression by TGF-beta1 remains poorly understood. We found that of Smad1-Smad7, Smad3 alone was able to inhibit expression of markers of macrophage activation (inducible nitric-oxide synthase and matrix metalloproteinase-12) following lipopolysaccharide treatment in gene reporter assays. Transient and constitutive overexpression of a dominant negative Smad3 opposed the inhibitory effect of TGF-beta1. Domain swapping experiments suggest that both the Smad MH-1 and MH-2 domains are required for inhibition. Mutation of a critical amino acid residue required for DNA binding in the MH-1 of Smad3 (R74A) resulted in the loss of inhibition. Transient overexpression of p300, an interactor of the Smad MH-2 domain, partially alleviated the inhibition by TGF-beta1/Smad3, suggesting that inhibition of gene expression may be due to increased competition for limiting amounts of this coactivator. Our results have implications for the understanding of gene suppression by TGF-beta1 and for the regulation of activated macrophages by TGF-beta1.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk