Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pharmacology. 2000 Sep;61(3):154-66.

Glutathione S-transferase polymorphisms and their biological consequences.

Author information

  • 1Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, UK. hayes@icrf.icnet.uk

Abstract

Two supergene families encode proteins with glutathione S-transferase (GST) activity: the family of soluble enzymes comprises at least 16 genes; the separate family of microsomal enzymes comprises at least 6 genes. These two GST families are believed to exert a critical role in cellular protection against oxidative stress and toxic foreign chemicals. They detoxify a variety of electrophilic compounds, including oxidized lipid, DNA and catechol products generated by reactive oxygen species-induced damage to intracellular molecules. An increasing number of GST genes are being recognized as polymorphic. Certain alleles, particularly those that confer impaired catalytic activity (e.g. GSTM1(*)0, GSTT1(*)0), may be associated with increased sensitivity to toxic compounds. GST polymorphisms may be disease modifying; for example, in subgroups of patients with basal cell carcinoma or bronchial hyper-responsiveness, certain GST appear to exert a statistically significant and biologically relevant impact on disease susceptibility.

Copyright 2000 S. Karger AG, Basel

PMID:
10971201
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for S. Karger AG, Basel, Switzerland
    Loading ...
    Write to the Help Desk