Display Settings:

Format

Send to:

Choose Destination
Dev Growth Differ. 2000 Aug;42(4):347-57.

The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner.

Author information

  • 1Howard Hughes Medical Institute, Seattle, Washington, USA.

Abstract

In spite of abundant evidence that Wnts play essential roles in embryonic induction and patterning, little is known about the expression or activities of Wnt receptors during embryogenesis. The isolation and expression of two maternal Xenopus frizzled genes, Xfrizzled-1 and Xfrizzled-7, is described. It is also demonstrated that both can activate the Wnt/beta-catenin signaling pathway as monitored by the induction of specific target genes. Activation of the beta-Catenin pathway has previously been shown to be necessary and sufficient for specifying the dorsal axis of Xenopus. beta-Catenin is thought to work through the cell-autonomous induction of the homeobox genes siamois and twin, that in turn bind to and activate the promoter of another homeobox gene, goosecoid. However, it was found that the beta-catenin pathway regulated the expression of both endogenous goosecoid, and a goosecoid promoter construct, in a cell non-autonomous manner. These data demonstrate that maternal Frizzleds can activate the Wnt/beta-catenin pathway in Xenopus embryos, and that induction of a known downstream gene can occur in a cell non-autonomous manner.

PMID:
10969734
[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances, Grant Support

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk