Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2000 Aug 28;275(2):582-8.

Novel proteinaceous toxins from the box jellyfish (sea wasp) Carybdea rastoni.

Author information

  • 1Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan. nagai@sunbor.or.jp

Abstract

During summer and autumn, the box jellyfish (sea wasp) Carybdea rastoni is one of the most bothersome stinging pests to swimmers and bathers on the Japanese coast. Two labile but potent hemolytic toxins from the tentacles of Carybdea rastoni were isolated in their active forms using newly developed purification methods. The molecular masses of the isolated C. rastoni toxin-A and toxin-B (CrTX-A and CrTX-B) are 43 and 46 kDa, respectively, as calculated from SDS-PAGE. In the present study, we sequenced the full-length cDNA (1600 bp), which encodes both CrTX-A and CrTX-B. The deduced 450 amino acid sequence of the CrTXs, showed no significant homology with any known protein. This report presents the first complete sequence of a proteinaceous jellyfish toxin. Furthermore, it was revealed that CrTX-A was primarily localized in the nematocyst, whereas CrTX-B was detected only in the tentacle. Because the nematocyst is the organ responsible for the cnidarian sting, the remainder of the study focused on the toxicity of CrTX-A. We found that CrTX-A was fatally toxic to mice at 20 microg/kg (i.v.) and crayfish at 5 microg/kg (i.p.). Subcutaneously injected CrTX-A (0.1 microg) caused inflammation of mouse skin. These results showed that CrTX-A is responsible for the cutaneous inflammation observed in humans stung by C. rastoni.

Copyright 2000 Academic Press.

PMID:
10964707
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk