Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2000;28(4):357-62.

Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms.

Author information

  • 1Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA. jtrotter@salud.unm.edu

Abstract

Sea urchins and sea cucumbers, like other echinoderms, control the tensile properties of their connective tissues by regulating stress transfer between collagen fibrils. The collagen fibrils are spindle-shaped and up to 1 mm long with a constant aspect ratio of approx. 2000. They are organized into a tissue by an elastomeric network of fibrillin microfibrils. Interactions between the fibrils are regulated by soluble macromolecules that are secreted by local, neurally controlled, effector cells. We are characterizing the non-linear viscoelastic properties of sea cucumber dermis under different conditions, as well as the structures, molecules and molecular interactions that determine its properties. In addition, we are developing reagents that will bind covalently to fibril surfaces and reversibly form cross-links with other reagents, resulting in a chemically controlled stress-transfer capacity. The information being developed will lead to the design and construction of a synthetic analogue composed of fibres in an elastomeric matrix that contains photo- or electro-sensitive reagents that reversibly form interfibrillar cross-links.

PMID:
10961919
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press
    Loading ...
    Write to the Help Desk