Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Nov 10;275(45):34963-7.

The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A.

Author information

  • 1Genetisches Institut der Justus-Liebig-Universit├Ąt Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.

Abstract

Different mechanisms mediating methylation-dependent repression have been demonstrated. Two of these mechanisms play a role in the context of the granulocyte/macrophage-specific lysozyme gene: direct interference with DNA binding of the transcription factor GA-binding protein and deacetylation of histones. Besides enhancement in the unmethylated state, and transcriptional repression upon DNA methylation, the lysozyme downstream enhancer confers tissue-specific demethylation. Because both demethylation activity and repression ability have been attributed to the methyl-CpG-binding domain-containing protein MBD2, we analyzed this protein. The short form MBD2b binds to the methylated lysozyme enhancer and mediates transcriptional repression. MBD2b is capable of binding to the transcriptional repressor Sin3A. The interaction domain of Sin3A required for binding to MBD2b contains the paired amphipathic helix 3. We identified a minimal functional domain that confers both transcriptional repression as well as the interaction to Sin3A. In contrast to the functionally related proteins MeCP2 and MBD1, the repression domain of MBD2b overlaps with the methyl-CpG-binding domain.

PMID:
10950960
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk