Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Opt. 2000 Apr;5(2):185-93.

Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms.

Author information

  • 1Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA. pogue@dartmouth.edu

Abstract

Frequency-domain tissue spectroscopy is a method to measure the absolute absorption coefficient of bulk tissues, assuming that a representative model can be found to recover the optical properties from measurements. While reliable methods exist to calculate absorption coefficients from source-detector measurements less than a few centimeters apart along a flat tissue volume, it is less obvious what methods can be used for transmittance through the larger tissue volumes typically associated with neonatal cerebral monitoring. In this study we compare the use of multiple distance frequency-domain measurements processed with (i) a modified Beer-Lambert law method, (ii) an analytic infinite-medium diffusion theory expression, and (iii) a numerical finite element solution of the diffusion equation, with the goal of recovering the absolute absorption coefficient of the medium. Based upon our observations, the modified Beer-Lambert method provides accurate absolute changes in the absorption coefficient, while analytic infinite-medium diffusion theory solutions or finite element-based numerical solutions can be used to calculate the absolute absorption coefficient, assuming that the data can be measured at multiple source-detector distances. We recommend that the infinite-medium multi-distance method or the finite element method be used across large tissue regions for calculation of the absolute absorption coefficient using frequency-domain near-infrared measurements at multiple positions along the head.

PMID:
10938782
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Silverchair Information Systems
    Loading ...
    Write to the Help Desk