Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Aug 15;20(16):5981-8.

Genetically similar transduction mechanisms for touch and hearing in Drosophila.

Author information

  • 1Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, New York 11794-5230, USA.

Abstract

To test the effects of mechanosensory mutations on hearing in Drosophila, we have recorded sound-evoked potentials originating from ciliated sensory neurons in Johnston's organ, the chordotonal organ that is the sensory element of the fly's antennal ear. Electrodes inserted close to the antennal nerve were used to record extracellular compound potentials evoked by near-field sound stimuli. Sound-evoked potentials are absent in atonal mutant flies, which lack Johnston's organ. Mutations in many genes involved in mechanotransduction by tactile bristles also eliminate or reduce the Johnston's organ response, indicating that related transduction mechanisms operate in each type of mechanosensory organ. In addition, the sound-evoked response is affected by two mutations that do not affect bristle mechanotransduction, beethoven (btv) and touch-insensitive-larvaB (tilB). btv shows defects in the ciliary dilation, an elaboration of the axoneme that is characteristic of chordotonal cilia. tilB, which also causes male sterility, shows structural defects in sperm flagellar axonemes. This suggests that in addition to the shared transduction mechanism, axonemal integrity and possibly ciliary motility are required for signal amplification or transduction by chordotonal sensory neurons.

PMID:
10934246
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk