Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Nov 10;275(45):34901-8.

Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction.

Author information

  • 1Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

Abstract

Although the Ras subfamily of GTPases consists of approximately 20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, respectively. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homology with the calcium- and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homology with Ras-associating or RalGDS/AF6 homology (RA) domains. By searching for in vitro interaction with Ras-GTP proteins, PDZ-GEF specifically bound to Rap1A- and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunoprecipitation studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biological effects.

PMID:
10934204
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk