Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2000 Feb;1(2):119-29.

Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer.

Author information

  • 1Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6085, USA.

Abstract

In humans, a subset of cases of Limb-girdle muscular dystrophy (LGMD) arise from mutations in the genes encoding one of the sarcoglycan (alpha, beta, gamma, or delta) subunits of the dystrophin-glycoprotein complex. While adeno-associated virus (AAV) is a potential gene therapy vector for these dystrophies, it is unclear if AAV can be used if a diseased muscle is undergoing rapid degeneration and necrosis. The skeletal muscles of mice lacking gamma-sarcoglycan (gsg-/- mice) differ from the animal models that have been evaluated to date in that the severity of the skeletal muscle pathology is much greater and more representative of that of humans with muscular dystrophy. Following direct muscle injection of a recombinant AAV [in which human gamma-sarcoglycan expression is driven by a truncated muscle creatine kinase (MCK) promoter/enhancer], we observed significant numbers of muscle fibers expressing gamma-sarcoglycan and an overall improvement of the histologic pattern of dystrophy. However, these results could be achieved only if injections into the muscle were prior to the development of significant fibrosis in the muscle. The results presented in this report show promise for AAV gene therapy for LGMD, but underscore the need for intervention early in the time course of the disease process.

PMID:
10933922
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk