Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochem J. 2000 Aug 15;350 Pt 1:219-27.

The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells.

Author information

  • 1Physiologisches Institut der Universität, Gmelinstr. 5, D-72076 Tübingen, Germany.

Abstract

Transport of lactate and other monocarboxylates in mammalian cells is mediated by a family of transporters, designated monocarboxylate transporters (MCTs). The MCT4 member of this family has recently been identified as the major isoform of white muscle cells, mediating lactate efflux out of glycolytically active myocytes [Wilson, Jackson, Heddle, Price, Pilegaard, Juel, Bonen, Montgomery, Hutter and Halestrap (1998) J. Biol. Chem. 273, 15920-15926]. To analyse the functional properties of this transporter, rat MCT4 was expressed in Xenopus laevis oocytes and transport activity was monitored by flux measurements with radioactive tracers and by changes of the cytosolic pH using pH-sensitive microelectrodes. Similar to other members of this family, monocarboxylate transport via MCT4 is accompanied by the transport of H(+) across the plasma membrane. Uptake of lactate strongly increased with decreasing extracellular pH, which resulted from a concomitant drop in the K(m) value. MCT4 could be distinguished from the other isoforms mainly in two respects. First, MCT4 is a low-affinity MCT: for L-lactate K(m) values of 17+/-3 mM (pH-electrode) and 34+/-5 mM (flux measurements with L-[U-(14)C]lactate) were determined. Secondly, lactate is the preferred substrate of MCT4. K(m) values of other monocarboxylates were either similar to the K(m) value for lactate (pyruvate, 2-oxoisohexanoate, 2-oxoisopentanoate, acetoacetate) or displayed much lower affinity for the transporter (beta-hydroxybutyrate and short-chain fatty acids). Under physiological conditions, rat MCT will therefore preferentially transport lactate. Monocarboxylate transport via MCT4 could be competitively inhibited by alpha-cyano-4-hydroxycinnamate, phloretin and partly by 4, 4'-di-isothiocyanostilbene-2,2'-disulphonic acid. Similar to MCT1, monocarboxylate transport via MCT4 was sensitive to inhibition by the thiol reagent p-chloromercuribenzoesulphonic acid.

PMID:
10926847
[PubMed - indexed for MEDLINE]
PMCID:
PMC1221245
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk