Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2000 Aug 4;301(1):27-33.

Prediction of transcription terminators in bacterial genomes.

Author information

  • 1The Institute for Genomic Research, 9712 Medical Center Dr, Rockville, MD 20850, USA. mariae@tigr.org


This study describes an algorithm that finds rho-independent transcription terminators in bacterial genomes and evaluates the accuracy of its predictions. The algorithm identifies terminators by searching for a common mRNA motif: a hairpin structure followed by a short uracil-rich region. For each terminator, an energy-scoring function that reflects hairpin stability, and a tail-scoring function based on the number of U nucleotides and their proximity to the stem, are computed. A confidence value can be assigned to each terminator by analyzing candidate terminators found both within and between genes, and taking into account the energy and tail scores. The confidence is an empirical estimate of the probability that the sequence is a true terminator. The algorithm was used to conduct a comprehensive analysis of 12 bacterial genomes to identify likely candidates for rho-independent transcription terminators. Four of these genomes (Deinococcus radiodurans, Escherichia coli, Haemophilus influenzae and Vibrio cholerae) were found to have large numbers of rho-independent terminators. Among the other genomes, most appear to have no transcription terminators of this type, with the exception of Thermotoga maritima. A set of 131 experimentally determined E. coli terminators was used to evaluate the sensitivity of the method, which ranges from 89 % to 98 %, with corresponding false positive rates of 2 % and 18 %.

Copyright 2000 Academic Press.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk