Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Gene. 2000 Jul 25;253(1):95-105.

Structural similarities and evolutionary relationships in chloride-dependent alpha-amylases.

Author information

  • 1Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, B-4000, Liège, Belgium. sdamico@ulg.ac.be

Abstract

The alpha-amylase sequences contained in databanks were screened for the presence of amino acid residues Arg195, Asn298 and Arg/Lys337 forming the chloride-binding site of several specialized alpha-amylases allosterically activated by this anion. This search provides 38 alpha-amylases potentially binding a chloride ion. All belong to animals, including mammals, birds, insects, acari, nematodes, molluscs, crustaceans and are also found in three extremophilic Gram-negative bacteria. An evolutionary distance tree based on complete amino acid sequences was constructed, revealing four distinct clusters of species. On the basis of multiple sequence alignment and homology modeling, invariable structural elements were defined, corresponding to the active site, the substrate binding site, the accessory binding sites, the Ca(2+) and Cl(-) binding sites, a protease-like catalytic triad and disulfide bonds. The sequence variations within functional elements allowed engineering strategies to be proposed, aimed at identifying and modifying the specificity, activity and stability of chloride-dependent alpha-amylases.

PMID:
10925206
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk