Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anim Reprod Sci. 2000 Sep 1;62(4):265-75.

Effect of freezing rate of ram spermatozoa on subsequent fertility in vivo and in vitro.

Author information

  • 1Department of Animal Science and Production, University College Dublin, Lyons Research Farm, Newcastle, Ireland.

Abstract

Ram spermatozoa are most susceptible to damage during freezing between the temperatures of -10 degrees C and -25 degrees C. The objectives of the present study were to examine how freezing rate through this critical temperature zone affected the fertility of spermatozoa as assessed in vivo and in vitro. Semen from six adult rams was frozen at two different rates ("fast": 5 degrees C/min from +5 to -25 degrees C; "slow": 0.5 degrees C/min from +5 to -25 degrees C). In Experiment 1, semen from the fast and slow treatments was used to fertilize ovine oocytes that had been matured in vitro. Semen from the fast treatment yielded a higher cleavage rate (57% vs. 26%; P<0.001) and more blastocysts per oocyte (28% vs. 13%, P<0. 001) than slow-frozen. No correlation was found between fertilizing ability and viability as assessed by fluorescent probes. Experiment 2 was designed to establish the conception rates following both cervical and intrauterine insemination of frozen-thawed semen from the same bank of semen as used in Experiment 1. Ewes were superovulated with FSH and inseminated by laparoscopy with frozen semen. A significant difference was found in the number of fertilized ova following embryo recovery (81.4% vs. 39.3%; P<0.001). In a further study, 119 mature cull ewes were inseminated following a 12-day synchronization treatment with frozen semen by either intrauterine (laparoscopic) or cervical insemination. Insemination with fast-frozen semen resulted in a significantly higher pregnancy rate (P<0.05) irrespective of method of insemination. The data show that freezing rate affects the proportion of spermatozoa that retain their fertilizing ability post-thawing. However, once fertilization has occurred, development to the blastocyst stage is independent of freezing rate.

PMID:
10924829
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk