Send to:

Choose Destination
See comment in PubMed Commons below
Appl Microbiol Biotechnol. 2000 Jun;53(6):709-14.

Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity.

Author information

  • 1Laboratory of Microbial Ecology and Technology, Faculty of Agricultural and Applied Biological Sciences, University Ghent, Gent, Belgium.


Bacterial bile salt hydrolysis is considered a risk factor for the development of colon cancer because of the risk of forming harmful secondary bile salts after an initial deconjugation step. In this study, the influence of enhanced bacterial bile salt transformation by the bile salt hydrolase-active Lactobacillus reuteri was studied in batch culture using the microbial suspension of the Simulator of the Human Intestinal Microbial Ecosystem; (SHIME), which was supplemented with oxgall at 5 g/l or 30 g/l. Changes in the fermentative capacity of the microbial ecosystem and the (geno)toxic properties of the SHIME supernatants were investigated. Increasing concentrations of oxgall inhibited the fermentation. Transient cell toxicity was observed for samples supplemented with 5 g oxgall/l, while samples with 30 g oxgall/l exhibited toxicity. The results of the haemolysis test suggest that the detrimental effects were probably due to the membrane-damaging effects of bile salts. In all cases, the adverse effects could be counteracted by the addition of 7.5 +/- 0.5 log10 CFU L. reuteri/ml. Plausible mechanisms for the protective properties of L. reuteri could involve a precipitation of the deconjugated bile salts and a physical binding of bile salts by the bacterium, thereby making the harmful bile salts less bioavailable.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk