Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mutat Res. 2000 Jun 30;451(1-2):169-85.

DNA damage-induced mutation: tolerance via translesion synthesis.

Author information

  • 1School of Biological and Chemical Sciences, Deakin University, Victoria 3217, Geelong, Australia. bkunz@deakin.edu.au

Abstract

Translesion synthesis (TLS) appears to be required for most damage-induced mutagenesis in the yeast Saccharomyces cerevisiae, whether the damage arises from endogenous or exogenous sources. Thus, the production of such mutations seems to occur primarily as a consequence of the tolerance of DNA lesions rather than an error-prone repair mechanism. Tolerance via TLS in yeast involves proteins encoded by members of the RAD6 epistasis group for the repair of ultraviolet (UV) photoproducts, in particular two non-essential DNA polymerases that catalyse error-free or error-prone TLS. Homologues of these RAD6 group proteins have recently been discovered in rodent and/or human cells. Furthermore, the operation of error-free TLS in humans has been linked to a reduced risk of UV-induced skin cancer, whereas mutations generated by error-prone TLS may increase the risk of cancer. In this article, we review and link the evidence for translesion synthesis in yeast, and the involvement of nonreplicative DNA polymerases, to recent findings in mammalian cells.

PMID:
10915871
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk