Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2000 Jul 25;39(29):8460-9.

Structures of active and latent PAI-1: a possible stabilizing role for chloride ions.

Author information

  • 1MetaXen, South San Francisco, CA 94080, USA. matthews@exelixis.com

Abstract

Serpins exhibit a range of physiological roles and can contribute to certain disease states dependent on their various conformations. Understanding the mechanisms of the large-scale conformational reorganizations of serpins may lead to a better understanding of their roles in various cardiovascular diseases. We have studied the serpin, plasminogen activator inhibitor 1 (PAI-1), in both the active and the latent state and found that anionic halide ions may play a role in the active-to-latent structural transition. Crystallographic analysis of a stable mutant form of active PAI-1 identified an anion-binding site between the central beta-sheet and a small surface domain. A chloride ion was modeled in this site, and its identity was confirmed by soaking crystals in a bromide-containing solution and calculating a crystallographic difference map. The anion thus located forms a 4-fold ligated linchpin that tethers the surface domain to the central beta-sheet into which the reactive center loop must insert during the active-to-latent transition. Timecourse experiments measuring active PAI-1 stability in the presence of various halide ions showed a clear trend for stabilization of the active form with F(-) > Cl(-) > Br(-) >> I(-). We propose that the "stickiness" of this pin (i.e., the electronegativity of the anion) contributes to the energetics of the active-to-latent transition in the PAI-1 serpin.

PMID:
10913251
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk