Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2000 Aug;182(16):4394-400.

Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus.

Author information

  • 1Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada, N6A 5C1.

Abstract

Staphylococcus aureus was shown to transport iron complexed to a variety of hydroxamate type siderophores, including ferrichrome, aerobactin, and desferrioxamine. An S. aureus mutant defective in the ability to transport ferric hydroxamate complexes was isolated from a Tn917-LTV1 transposon insertion library after selection on iron-limited media containing aerobactin and streptonigrin. Chromosomal DNA flanking the Tn917-LTV1 insertion was identified by sequencing of chromosomal DNA isolated from the mutant. This information localized the transposon insertion to a gene whose predicted product shares significant similarity with FhuG of Bacillus subtilis. DNA sequence information was then used to clone a larger fragment of DNA surrounding the fhuG gene, and this resulted in the identification of an operon of three genes, fhuCBG, all of which show significant similarities to ferric hydroxamate uptake (fhu) genes in B. subtilis. FhuB and FhuG are highly hydrophobic, suggesting that they are embedded within the cytoplasmic membrane, while FhuC shares significant homology with ATP-binding proteins. Given this, the S. aureus FhuCBG proteins were predicted to be part of a binding protein-dependent transport system for ferric hydroxamates. Exogenous iron levels were shown to regulate ferric hydroxamate uptake in S. aureus. This regulation is attributable to Fur in S. aureus because a strain containing an insertionally inactivated fur gene showed maximal levels of ferric hydroxamate uptake even when the cells were grown under iron-replete conditions. By using the Fur titration assay, it was shown that the Fur box sequences upstream of fhuCBG are recognized by the Escherichia coli Fur protein.

PMID:
10913070
[PubMed - indexed for MEDLINE]
PMCID:
PMC94608
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk