Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8985-90.

Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors.

Author information

  • 1Laboratory of Molecular Biology, National Cancer Institute, and Laboratory of Cellular Biochemistry and Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-4255, USA.


The thyroid hormone 3,3',5-triiodo-l-thyronine (T3) is essential for growth, differentiation, and development. Its biological activities are mediated by T3 nuclear receptors (TRs). At present, how T3 regulates TR proteins and the resulting functional consequences are still unknown. Immunofluorescence analyses of endogenous TR in the growth hormone-producing GC cells showed that the T3-induced rapid degradation of TR was specifically blocked by lactacystin, a selective inhibitor of the ubiquitin-proteasome degradation pathway. Immunoblots demonstrated that the transfected TRbeta1 was ubiquitinated and that the ubiquitination was T3 independent. Studies with a series of truncated TRbeta1 showed that the hormone-binding domain was sufficient for the T3-induced rapid degradation of TRbeta1 by the proteasome degradation pathway. T3 also induced rapid degradation of TRbeta2 and TRalpha1. In contrast, the stability of the non-T3-binding TRalpha2 and naturally occurring TRbeta1 mutants that do not bind T3 was not affected by T3 treatment, indicating that hormone binding to receptor was essential for the degradation of the wild-type receptors. In the presence of proteasome protease inhibitors, the levels of both total and ubiquitinated TRbeta1 protein increased, yet T3-dependent transcriptional activation and the expression of the growth hormone gene were diminished, suggesting that proteasome-mediated degradation played a novel role in modulating transcriptional activation by TR. The present study reveals a role of T3 in modulating the functions of TR by regulating its receptor level via the ubiquitin-proteasome degradation pathway.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk