Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2000 Aug;17(8):1251-8.

Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used.

Author information

  • 1Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Abstract

In phylogenetic inference by maximum-parsimony (MP), minimum-evolution (ME), and maximum-likelihood (ML) methods, it is customary to conduct extensive heuristic searches of MP, ME, and ML trees, examining a large number of different topologies. However, these extensive searches tend to give incorrect tree topologies. Here we show by extensive computer simulation that when the number of nucleotide sequences (m) is large and the number of nucleotides used (n) is relatively small, the simple MP or ML tree search algorithms such as the stepwise addition (SA) plus nearest neighbor interchange (NNI) search and the SA plus subtree pruning regrafting (SPR) search are as efficient as the extensive search algorithms such as the SA plus tree bisection-reconnection (TBR) search in inferring the true tree. In the case of ME methods, the simple neighbor-joining (NJ) algorithm is as efficient as or more efficient than the extensive NJ+TBR search. We show that when ME methods are used, the simple p distance generally gives better results in phylogenetic inference than more complicated distance measures such as the Hasegawa-Kishino-Yano (HKY) distance, even when nucleotide substitution follows the HKY model. When ML methods are used, the simple Jukes-Cantor (JC) model of phylogenetic inference generally shows a better performance than the HKY model even if the likelihood value for the HKY model is much higher than that for the JC model. This indicates that at least in the present case, selecting of a substitution model by using the likelihood ratio test or the AIC index is not appropriate. When n is small relative to m and the extent of sequence divergence is high, the NJ method with p distance often shows a better performance than ML methods with the JC model. However, when the level of sequence divergence is low, this is not the case.

PMID:
10908645
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk