Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Structure. 2000 Jul 15;8(7):751-62.

X-ray structure of Escherichia coli pyridoxine 5'-phosphate oxidase complexed with FMN at 1.8 A resolution.

Author information

  • 1Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA. msafo@hsc.vcu.edu

Abstract

BACKGROUND:

Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate (PLP), a cofactor used by many enzymes involved in amino acid metabolism. The enzyme oxidizes either the 4'-hydroxyl group of pyridoxine 5'-phosphate (PNP) or the 4'-primary amine of pyridoxamine 5'-phosphate (PMP) to an aldehyde. PNPOx is a homodimeric enzyme with one flavin mononucleotide (FMN) molecule non-covalently bound to each subunit. A high degree of sequence homology among the 15 known members of the PNPOx family suggests that all members of this group have similar three-dimensional folds.

RESULTS:

The crystal structure of PNPOx from E. coli has been determined to 1.8 A resolution. The monomeric subunit folds into an eight-stranded beta sheet surrounded by five alpha-helical structures. Two monomers related by a twofold axis interact extensively along one-half of each monomer to form the dimer. There are two clefts at the dimer interface that are symmetry-related and extend from the top to the bottom of the dimer. An FMN cofactor that makes interactions with both subunits is located in each of these two clefts.

CONCLUSIONS:

The structure is quite similar to the recently deposited 2.7 A structure of Saccharomyces cerevisiae PNPOx and also, remarkably, shares a common structural fold with the FMN-binding protein from Desulfovibrio vulgaris and a domain of chymotrypsin. This high-resolution E. coli PNPOx structure permits predictions to be made about residues involved in substrate binding and catalysis. These predictions provide testable hypotheses, which can be answered by making site-directed mutants.

PMID:
10903950
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk