Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Clin Endocrinol Metab. 2000 Jul;85(7):2463-8.

Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial.

Author information

  • 1Department of Medicine, University of Vermont College of Medicine, Burlington 05405, USA. epoehlman@zoo.uvm.edu

Abstract

We examined the effects of a 6-month randomized program of endurance training (n = 14), resistance training (n = 17), or control conditions (n = 20) on insulin sensitivity in nonobese, younger women (18-35 yr). To examine the possible mechanism(s) related to alterations in insulin sensitivity, we measured body composition, regional adiposity, and skeletal muscle characteristics with computed tomography. We observed no changes in total body fat, sc abdominal adipose tissue, or visceral adipose tissue with endurance or resistance training. Insulin sensitivity, however, increased with endurance training (pre, 421 +/- 107; post, 490 +/- 133 mg/min; P < 0.05) and resistance training (pre, 382 +/- 87; post, 417 +/- 89 mg/min; P = 0.06). When the glucose disposal rate was expressed per kg fat-free mass (FFM), the improved insulin sensitivity persisted in endurance-trained (pre, 10.5 +/- 2.7; post, 12.1 +/- 3.3 mg/min x kg FFM; P < 0.05), but not in resistance-trained (pre, 9.7 +/- 1.9; post, 10.2 +/- 1.8 mg/min x kg FFM; P = NS) women. Muscle attenuation ratios increased (P < 0.05) in both endurance- and resistance-trained individuals, but this was not related to changes in insulin sensitivity. Moreover, the change in insulin sensitivity was not related to the increased maximum aerobic capacity in endurance-trained women (r = 0.24; P = NS). We suggest that both endurance and resistance training improve glucose disposal, although by different mechanisms, in young women. An increase in the amount of FFM from resistance training contributes to increased glucose disposal probably from a mass effect, without altering the intrinsic capacity of the muscle to respond to insulin. On the other hand, endurance training enhances glucose disposal independent of changes in FFM or maximum aerobic capacity, suggestive of an intrinsic change in the muscle to metabolize glucose. We conclude that enhanced glucose uptake after physical training in young women occurs with and without changes in FFM and body composition.

PMID:
10902794
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk