Display Settings:

Format

Send to:

Choose Destination
Plant Physiol. 2000 Jul;123(3):1021-7.

Increases in water potential gradient reduce xylem conductivity in whole plants. Evidence from a low-pressure conductivity method.

Author information

  • 1Department of Plant Science, University of Tasmania, G.P.O. Box 252-55, Hobart 7001, Tasmania, Australia. brodribb@utas.edu.au

Abstract

A new method using hydrostatic suctions (less than 0.02 MPa) was used to measure whole-root conductivity (K(r)) in saplings of two angiosperm pioneer trees (Eucalyptus regnans and Toona australis) and two rainforest conifers (Dacrycarpus dacrydioides and Nageia fleurii). The resultant K(r) was combined with measurements of stem and leaf hydraulic conductivity to calculate whole-plant conductivity and to predict leaf water potential (Psi(l)) during transpiration. At normal soil temperatures there was good agreement between measured and predicted Psi(l) during transpiration in all species. Changes in the soil-to-leaf water potential gradient were produced by root chilling, and in three of the four species, changes in Psi(l) corresponded to those expected by the effect of increased water viscosity on K(r). In one species, however, root chilling produced severe plant wilting and a decline in Psi(l) significantly below the predicted value. In this species Psi(l) decreased to a value close to, or below, the Psi(l) at 50% xylem cavitation. It is concluded that decreased whole-plant conductivity in T. australis resulted from a decrease in xylem conductivity due to stress-induced cavitation.

PMID:
10889251
[PubMed - indexed for MEDLINE]
PMCID:
PMC59065
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk