Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2000 Jul 15;349(Pt 2):519-26.

Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding.

Author information

  • 1Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA.


Changes in the kinetics and regulation of oxidative phosphorylation were characterized in isolated rat liver mitochondria after 2 months of ethanol consumption. Mitochondrial energy metabolism was conceptually divided into three groups of reactions, either producing protonmotive force (Deltap) (the respiratory subsystem) or consuming it (the phosphorylation subsystem and the proton leak). Manifestation of ethanol-induced mitochondrial malfunctioning of the respiratory subsystem was observed with various substrates; the respiration rate in State 3 was inhibited by 27+/-4% with succinate plus amytal, by 20+/-4% with glutamate plus malate, and by 17+/-2% with N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. The inhibition of the respiratory activity correlated with the lower activities of cytochrome c oxidase, the bc(1) complex, and the ATP synthase in mitochondria of ethanol-fed rats. The block of reactions consuming the Deltap to produce ATP (the phosphorylating subsystem) was suppressed after 2 months of ethanol feeding, whereas the mitochondrial proton leak was not affected. The contributions of Deltap supply (the respiratory subsystem) and Deltap demand (the phosphorylation and the proton leak) to the control of the respiratory flux were quantified as the control coefficients of these subsystems. In State 3, the distribution of control exerted by different reaction blocks over respiratory flux was not significantly affected by ethanol diet, despite the marked changes in the kinetics of individual functional units of mitochondrial oxidative phosphorylation. This suggests the operation of compensatory mechanisms, when control redistributes among the different components within the same subsystem.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk