Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Annu Rev Biochem. 1999;68:821-61.

CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals.

Author information

  • 1Department of Neurology, Children's Hospital, Boston, Massachusetts, USA.

Erratum in

  • Annu Rev Biochem. 2003;72:vii.

Abstract

Extracellular stimuli elicit changes in gene expression in target cells by activating intracellular protein kinase cascades that phosphorylate transcription factors within the nucleus. One of the best characterized stimulus-induced transcription factors, cyclic AMP response element (CRE)-binding protein (CREB), activates transcription of target genes in response to a diverse array of stimuli, including peptide hormones, growth factors, and neuronal activity, that activate a variety of protein kinases including protein kinase A (PKA), pp90 ribosomal S6 kinase (pp90RSK), and Ca2+/calmodulin-dependent protein kinases (CaMKs)[corrected]. These kinases all phosphorylate CREB at a particular residue, serine 133 (Ser133), and phosphorylation of Ser133 is required for CREB-mediated transcription. Despite this common feature, the mechanism by which CREB activates transcription varies depending on the stimulus. In some cases, signaling pathways target additional sites on CREB or proteins associated with CREB, permitting CREB to regulate distinct programs of gene expression under different conditions of stimulation. This review discusses the molecular mechanisms by which Ser133-phosphorylated CREB activates transcription, intracellular signaling pathways that lead to phosphorylation of CREB at Ser133, and features of each signaling pathway that impart specificity at the level of CREB activation.

PMID:
10872467
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk