Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Sep 8;275(36):27712-9.

Regulation of the Ca2+-sensitive domains of the maxi-K channel in the mouse myometrium during gestation.

Author information

  • 1Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA.

Abstract

Large conductance Ca(2+)-activated K(+) channels (maxi-K channels) are known to modulate uterine activity during gestation. Electrophysiological recordings demonstrate that myometrial maxi-K current is suppressed in term-pregnant compared to non-pregnant mice. We sought to determine whether maxi-K current suppression is due to reduction of maxi-K channel protein or differential expression of maxi-K channel isoforms that vary in their Ca(2+) and voltage sensitivities. Immunoblot analyses show an increase of maxi-K channel protein throughout gestation. Polymerase chain reaction of mouse myometrial cDNA identified four alternatively spliced sites within the maxi-K transcript and three within the Ca(2+)-sensitive "tail" domain. Ribonuclease protection analyses demonstrate that total channel transcript levels mimic protein expression; however transcript levels of alternatively spliced regions of regulatory domains that alter sensitivity to voltage and Ca(2+) differ in their gestational expression. An insert that increases the maxi-K channel sensitivity to voltage and Ca(2+) is present at steady levels throughout gestation, differing from total channel transcript regulation. The insert-less form of this transcript, which reduces the channel voltage and Ca(2+) sensitivity, is not detected until midterm pregnancy. These findings verify that multiple isoforms of the maxi-K channel are present in the mouse myometrium and are regulated differentially during gestation, which is a likely mechanism for modulation of myometrial excitability during pregnancy.

PMID:
10871603
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk