Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2000 Jun;293(3):1063-73.

S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626.

Author information

  • 1Department of Psychopharmacology, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France.

Abstract

The selective dopamine D(3)-receptor antagonist S33084 dose dependently attenuated induction of hypothermia by 7-hydroxy-2-dipropylaminotetralin (7-OH-DPAT) and PD128,907. S33084 also dose dependently reduced 7-OH-DPAT-induced penile erections (PEs) but had little effect on 7-OH-DPAT-induced yawning and hypophagia, and it did not block contralateral rotation elicited by the preferential D(3) agonist quinpirole in unilateral substantia nigra-lesioned rats. In models of potential antipsychotic activity, S33084 had little effect on conditioned avoidance behavior and the locomotor response to amphetamine and cocaine in rats, and weakly inhibited apomorphine-induced climbing in mice. Moreover, S33084 was inactive in models of potential extrapyramidal activity in rats: induction of catalepsy and prolactin secretion and inhibition of methylphenidate-induced gnawing. Another selective D(3) antagonist, GR218,231, mimicked S33084 in inhibiting 7-OH-DPAT-induced PEs and hypothermia but neither hypophagia nor yawning behavior. Similarly, it was inactive in models of potential antipsychotic and extrapyramidal activity. In distinction to S33084 and GR218,231, the preferential D(2) antagonist L741,626 inhibited all responses elicited by 7-OH-DPAT. Furthermore, it displayed robust activity in models of antipsychotic and, at slightly higher doses, extrapyramidal activity. In summary, S33084 was inactive in models of potential antipsychotic and extrapyramidal activity and failed to modify spontaneous locomotor behavior. Furthermore, it did not affect hypophagia or yawns, but attenuated hypothermia and PEs, elicited by 7-OH-DPAT. This profile was shared by GR218,231, whereas L741,626 was effective in all models. Thus, D(2)-receptors are principally involved in these paradigms, although D(3)-receptors may contribute to induction of hypothermia and PEs. S33084 should comprise a useful tool for further exploration of the pathophysiological significance of D(3)- versus D(2)-receptors.

PMID:
10869411
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk