Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Sep 15;275(37):28682-7.

Long term depression in the CA1 field is associated with a transient decrease in pre- and postsynaptic PKC substrate phosphorylation.

Author information

  • 1Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands. g.j.j.ramakers@med.uu.nl

Abstract

Induction of homosynaptic long term depression (LTD) in the CA1 field of the hippocampus is thought to require activation of N-methyl-d-aspartate receptors, an elevation of postsynaptic Ca(2+) levels, and a subsequent increase in phosphatase activity. To investigate the spatial and temporal changes in protein phosphatase activity following LTD induction, we determined the in situ phosphorylation state of a pre- (GAP-43/B-50) and postsynaptic (RC3) protein kinase C substrate during N-methyl-d-aspartate receptor-dependent LTD in the CA1 field of rat hippocampal slices. We show that LTD is associated with a transient (<30 min) and D-AP5-sensitive reduction in GAP-43/B-50 and RC3 phosphorylation and that LTD is prevented by the phosphatase inhibitors okadaic acid and cyclosporin A. Our data provide strong evidence for a transient increase in pre- and postsynaptic phosphatase activity during LTD. Since the in situ phosphorylation of the calmodulin-binding proteins GAP-43/B-50 and RC3 changes during both LTD and long term potentiation, these proteins may form part of the link between the Ca(2+) signal and Ca(2+)/calmodulin-dependent processes implicated in long term potentiation and LTD.

PMID:
10867003
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk