Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Proteins. 2000 Aug 15;40(3):502-11.

Application of multiple sequence alignment profiles to improve protein secondary structure prediction.

Author information

  • 1Laboratory of Molecular Biophysics, Oxford, United Kingdom.


The effect of training a neural network secondary structure prediction algorithm with different types of multiple sequence alignment profiles derived from the same sequences, is shown to provide a range of accuracy from 70.5% to 76.4%. The best accuracy of 76.4% (standard deviation 8.4%), is 3.1% (Q(3)) and 4.4% (SOV2) better than the PHD algorithm run on the same set of 406 sequence non-redundant proteins that were not used to train either method. Residues predicted by the new method with a confidence value of 5 or greater, have an average Q(3) accuracy of 84%, and cover 68% of the residues. Relative solvent accessibility based on a two state model, for 25, 5, and 0% accessibility are predicted at 76.2, 79.8, and 86. 6% accuracy respectively. The source of the improvements obtained from training with different representations of the same alignment data are described in detail. The new Jnet prediction method resulting from this study is available in the Jpred secondary structure prediction server, and as a stand-alone computer program from: http://barton.ebi.ac.uk/. Proteins 2000;40:502-511.

Copyright 2000 Wiley-Liss, Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk