Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7657-62.

Enhanced learning after genetic overexpression of a brain growth protein.

Author information

  • 1Cresap Neuroscience Laboratory, Departments of Psychology and Neurobiology, Institute for Neuroscience, Northwestern University, 2029 Sheridan Road, Evanston, IL 60208, USA.


Ramón y Cajal proposed 100 years ago that memory formation requires the growth of nerve cell processes. One-half century later, Hebb suggested that growth of presynaptic axons and postsynaptic dendrites consequent to coactivity in these synaptic elements was essential for such information storage. In the past 25 years, candidate growth genes have been implicated in learning processes, but it has not been demonstrated that they in fact enhance them. Here, we show that genetic overexpression of the growth-associated protein GAP-43, the axonal protein kinase C substrate, dramatically enhanced learning and long-term potentiation in transgenic mice. If the overexpressed GAP-43 was mutated by a Ser --> Ala substitution to preclude its phosphorylation by protein kinase C, then no learning enhancement was found. These findings provide evidence that a growth-related gene regulates learning and memory and suggest an unheralded target, the GAP-43 phosphorylation site, for enhancing cognitive ability.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk