Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 2000 Jun;114(6):1101-7.

Keratin 17 expression in the hard epithelial context of the hair and nail, and its relevance for the pachyonychia congenita phenotype.

Author information

  • 1Departments of Biological Chemistry and Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.


The hard-keratin-containing portion of the murine hair shaft displays a positive immunoreactivity with an antibody against the soft epithelial keratin, K17. The K17-expressing cell population is located in the medulla compartment of the hair. Consistent with this observation, K17-containing cells also occur in the presumptive medulla precursor cells located in the hair follicle matrix. Western blot analysis of hair extracts prepared from a number of mouse strains confirms this observation and suggests that K17 expression in the hair shaft is a general trait in this species. The expression of K17 in human hair extracts is restricted to eyebrow and facial hair samples. These are the major sites for the occurrence of the pili torti (twisted hair) phenotype in the type 2 (Jackson-Lawler) form of pachyonychia congenita, previously shown to arise from inherited K17 mutations. Given that all forms of pachyonychia congenita show an involvement of the nail, we compared the expression of the two other genes mutated in pachyonychia congenita diseases, K6 and K16, with that of K17 in human nail. All three keratins are abundantly expressed within the nail bed epithelium, whereas K17 protein is expressed in the nail matrix, which contains the epithelial cell precursors for the nail plate. Our data suggest a role for K17 in the formation and maintenance of various skin appendages and directly support the concept that pachyonychia congenita is a disease of the nail bed.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk