Display Settings:

Format

Send to:

Choose Destination
J Neurobiol. 2000 Jun 5;43(3):269-81.

Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats.

Author information

  • 1Instituto Cajal, CSIC, E-28002 Madrid, Spain.

Abstract

Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones resulted in a marked decrease in IGF-IR protein levels. Estradiol administration to ovariectomized rats increased IGFBP-2 immunoreactive levels in the hypothalamus. While progesterone did not significantly affect IGFBP-2 expression, the simultaneous injection of estradiol and progesterone resulted in a marked decrease in IGFBP-2 protein levels. The effect of estradiol on IGFBP-2 was observed both in protein and mRNA levels, suggesting a transcriptional regulation. However, the simultaneous administration of progesterone and estradiol had different effects on IGF-IR protein and IGF-IR mRNA levels, as well as on IGFBP-2 protein and IGFBP-2 mRNA levels, suggesting a postranscriptional action. These findings indicate that estradiol and progesterone regulate the expression of IGF-IR and IGFBP-2 in the mediobasal hypothalamus of adult female rats. Regulation of the hypothalamic IGF-I system by ovarian hormones may be physiologically relevant for neuroendocrine regulation and for synaptic plasticity during the estrous cycle. These results do not support the hypothesis that estrogen-induced accumulation of IGF-I by tanycytes is mediated by the hormonal regulation of IGF-IR. However, estrogen-induced up-regulation of IGFBP-2 and progesterone-induced down-regulation of IGF-IR and IGFBP-2 levels in the apical plasma membrane of tanycytes may be involved in the fluctuation of IGF-I levels in the mediobasal hypothalamus during the estrous cycle.

Copyright 2000 John Wiley & Sons, Inc.

PMID:
10842239
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk