Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Aug 4;275(31):23745-50.

Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties.

Author information

  • 1Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.

Abstract

Vascular basement membrane is an important regulator of angiogenesis and undergoes many alterations during angiogenesis and these changes are speculated to influence neovascularization. Recently, fragments of collagen molecules have been identified to possess anti-angiogenic activity. Tumstatin (alpha3(IV)NC1 domain) is one such novel molecule with distinct anti-tumor properties and possesses an N-terminal (amino acids 54-132) anti-angiogenic and a C-terminal (amino acids 185-203) anti-tumor cell activity (Maeshima, Y., et al. 2000) J. Biol. Chem. 275, 21340-21348). Previous studies have identified the 185-203 amino acid sequence as a ligand for alpha(v)beta(3) integrin (Shahan, T. A., et al. (1999) Cancer Res. 59, 4584-4590). In the present study, we found distinct additional RGD-independent alpha(v)beta(3) integrin binding site within 54-132 amino acids of tumstatin. This site is not essential for inhibition of tumor cell proliferation but necessary for the anti-angiogenic activity. A fragment of tumstatin containing 54-132 amino acid (tum-2) binds both endothelial cells and melanoma cells but only inhibited proliferation of endothelial cells, with no effect on tumor cell proliferation. A similar experiment with fragment of tumstatin containing the 185-203 amino acid (tum-4) demonstrates that it binds both endothelial cells and melanoma cells but only inhibits the proliferation of melanoma cells. The presence of cyclic RGD peptides did not affect the alpha(v)beta(3) integrin-mediated activity of tumstatin, although significant inhibition of endothelial cell binding to vitronectin was observed. The two distinct RGD-independent binding sites on tumstatin suggest unique alpha(v)beta(3) integrin-mediated mechanisms governing the two distinct anti-tumor properties of tumstatin.

PMID:
10837460
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk