Display Settings:

Format

Send to:

Choose Destination
Genetics. 2000 Jun;155(2):509-22.

Two classes of sir3 mutants enhance the sir1 mutant mating defect and abolish telomeric silencing in Saccharomyces cerevisiae.

Author information

  • 1Department of Biology, University of California, San Diego 92093-0347, USA.

Abstract

Silent information regulators, or Sir proteins, play distinct roles in chromatin-mediated transcriptional control at the silent mating-type loci, telomeres, and within the rDNA repeats of Saccharomyces cerevisiae. An unusual collection of sir3 mutant alleles was identified in a genetic screen for enhancers of the sir1 mutant mating-defective phenotype. These sir3-eso mutants, like the sir1 mutant, exhibit little or no mating defects alone, but the sir1 sir3-eso double mutants are essentially nonmating. All of the sir3-eso mutants are defective in telomeric silencing. In some mutants, this phenotype is suppressed by tethering Sir1p to telomeres; other mutants are dominant for mating and telomeric silencing defects. Additionally, several sir3-eso mutants are nonmating in combination with the nat1 N-terminal acetyltransferase mutant. The temperature-sensitive allele sir3-8 has an eso phenotype at permissive temperature, yet acts as a null allele at restrictive temperature due to loss of sir3-8 protein. Sequence analysis showed that eight of the nine sir3-eso alleles have mutations within the N-terminal region that is highly similar to the DNA replication initiation protein Orc1p. Together, these data reveal modular domains for Sir3p and further define its function in silencing chromatin.

PMID:
10835377
[PubMed - indexed for MEDLINE]
PMCID:
PMC1461112
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk