Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Jun 2;275(22):17064-71.

Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death.

Author information

  • 1Interdisciplinary Center for Clinical Research (IZKF), Research Group "Apoptosis and Cell Death," Westphalian Wilhelms University, D-48149 M√ľnster, Germany.

Abstract

Glutamate receptor overactivation contributes to neuron death after stroke, trauma, and epileptic seizures. Exposure of cultured rat hippocampal neurons to the selective glutamate receptor agonist N-methyl-d-aspartate (300 microm, 5 min) or to the apoptosis-inducing protein kinase inhibitor staurosporine (300 nm) induced a delayed neuron death. In both cases, neuron death was preceded by the mitochondrial release of the pro-apoptotic factor cytochrome c. Unlike staurosporine, the N-methyl-d-aspartate-induced release of cytochrome c did not lead to significant activation of caspase-3, the main caspase involved in the execution of neuronal apoptosis. In contrast, activation of the Ca(2+)-activated neutral protease calpain I was readily detectable after the exposure to N-methyl-d-aspartate. In a neuronal cell-free apoptosis system, calpain I prevented the ability of cytochrome c to activate the caspase cascade by inhibiting the processing of procaspase-3 and -9 into their active subunits. In the hippocampal neuron cultures, the inhibition of calpain activity restored caspase-3-like protease activity after an exposure to N-methyl-d-aspartate. Our data demonstrate the existence of signal transduction pathways that prevent the entry of cells into a caspase-dependent cell death program after the mitochondrial release of cytochrome c.

PMID:
10828077
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk