Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5784-9.

Structural diversity of self-cleaving ribozymes.

Author information

  • 1Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA.


In vitro selection was used to isolate Mg(2+)-dependent self-cleaving ribozymes from random sequence. Characterization of representative clones revealed the emergence of at least 12 classes of ribozymes that adopt distinct secondary structure motifs. Only one class corresponds to a previously known structural motif, that of the naturally occurring hammerhead ribozyme. Each ribozyme promotes self-cleavage via an internal phosphoester transfer reaction involving the adjacent 2'-hydroxyl group with a chemical rate enhancement of between 10(3)- and 10(6)-fold greater than the corresponding uncatalyzed rate. These findings indicate that RNA can form a multitude of secondary and tertiary structures that promote cleavage by internal phosphoester transfer. Upon further in vitro selection, a class I ribozyme that adopts an "X motif" structure dominates over all other ribozymes in the population. Thus, self-cleaving RNAs isolated by in vitro selection from random-sequence populations can rival the catalytic efficiency of natural ribozymes.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk