Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2000 May 23;39(20):5921-8.

Reaction of bovine cytochrome c oxidase with hydrogen peroxide produces a tryptophan cation radical and a porphyrin cation radical.

Author information

  • 1School of Biological Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, U.K.

Abstract

Oxidized bovine cytochrome c oxidase reacts with hydrogen peroxide to generate two electron paramagnetic resonance (EPR) free radical signals (Fabian, M., and Palmer, G. (1995) Biochemistry 34, 13802-13810). These radicals are associated with the binuclear center and give rise to two overlapped EPR signals, one signal being narrower in line width (DeltaHptp = 12 G) than the other (DeltaHptp = 45 G). We have used electron nuclear double resonance (ENDOR) spectrometry to identify the two different chemical species giving rise to these two EPR signals. Comparison of the ENDOR spectrum associated with the narrow signal with that of compound I of horseradish peroxidase (formed by reaction of that enzyme with hydrogen peroxide) demonstrates that the two species are virtually identical. The chemical species giving rise to the narrow signal is therefore identified as an exchange-coupled porphyrin cation radical similar to that formed in horseradish peroxidase compound I. Comparison of the ENDOR spectrum of compound ES (formed by the reaction of hydrogen peroxide with cytochrome c peroxidase) with that of the broad signal indicates that the chemical species giving rise to the broad EPR signal in cytochrome c oxidase is probably an exchange coupled tryptophan cation radical. This is substantiated using H(2)O/D(2)O solvent exchange experiments where the ENDOR difference spectrum of the broad EPR signal of cytochrome c oxidase shows a feature consistent with hyperfine coupling to the exchangeable N(1) proton of a tryptophan cation radical.

PMID:
10821663
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk