Format

Send to:

Choose Destination
See comment in PubMed Commons below
Life Sci. 2000 Apr 7;66(20):1893-903.

Apoptotic response and cell cycle transition in ataxia telangiectasia cells exposed to oxidative stress.

Author information

  • 1U.O. Neurometabolic Diseases, Institute of Neurological Sciences, University of Siena, Italy.

Abstract

The recently identified ATM gene plays a role in a signal transduction network activating multiple cellular functions in response to DNA damage. An attractive hypothesis is that the ATM protein is involved in a specialized antioxidant system responsible for detoxifying reactive oxygen intermediate and that the absence or dysfunction of this protein in AT cells would render them less capable of dealing with oxidative stress. In order to investigate the role of the ATM gene in cell cycle control and programmed cell death, Lymphoblastoid cell lines derived from four Ataxia-Telangiectasia (AT) patients and six controls have been analyzed. All cell lines were incubated with 2-deoxy-D-ribose (dRib), a reducing sugar that induces apoptosis through oxidative stress. The result showed an impaired response to dRib-induced apoptosis in AT cells, as well as a defect of cellular cycle arrest in G1/S phase and a normal expression of p53 protein. This indicate that the kinase activity of ATM gene product plays a very important role in the cellular response to oxidative stress. In conclusion the altered response of AT cells to oxidative stress and particularly their resistance to apoptotic cell death, could explain the high predisposition of these cells to progress toward malignant transformation.

PMID:
10821114
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk