Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2000 May;83(5):2956-66.

Rate of quantal excitation to a retinal ganglion cell evoked by sensory input.

Author information

  • 1Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.

Abstract

To determine the rate and statistics of light-evoked transmitter release from bipolar synapses, intracellular recordings were made from ON-alpha ganglion cells in the periphery of the intact, superfused, cat retina. Sodium channels were blocked with tetrodotoxin to prevent action potentials. A light bar covering the receptive field center excited the bipolar cells that contact the alpha cell and evoked a transient then a sustained depolarization. The sustained depolarization was quantified as change in mean voltage (Deltav), and the increase in voltage noise that accompanied it was quantified as change in voltage variance (Deltasigma(2)). As light intensity increased, Deltav and Deltasigma(2) both increased, but their ratio held constant. This behavior is consistent with Poisson arrival of transmitter quanta at the ganglion cell. The response component attributable to glutamate quanta from bipolar synapses was isolated by application of 6-cyano-7-nitroquinoxaline (CNQX). As CNQX concentration increased, the signal/noise ratio of this response component (Deltav(CNQX)/Deltasigma(CNQX)) held constant. This is also consistent with Poisson arrival and justified the application of fluctuation analysis. Two different methods of fluctuation analysis applied to Deltav(CNQX) and Deltasigma(CNQX) produced similar results, leading to an estimate that a just-maximal sustained response was caused by approximately 3,700 quanta s(-1). The transient response was caused by a rate that was no more than 10-fold greater. Because the ON-alpha cell at this retinal locus has approximately 2,200 bipolar synapses, one synapse released approximately 1.7 quanta s(-1) for the sustained response and no more than 17 quanta s(-1) for the transient. Consequently, within the ganglion cell's integration interval, here calculated to be approximately 16 ms, a bipolar synapse rarely releases more than one quantum. Thus for just-maximal sustained and transient depolarizations, the conductance modulated by a single bipolar cell synapse is limited to the quantal conductance ( approximately 100 pS at its peak). This helps preserve linear summation of quanta. The Deltav/Deltasigma(2) ratio remained constant even as the ganglion cell's response saturated, which suggested that even at the peak of sensory input, summation remains linear, and that saturation occurs before the bipolar synapse.

PMID:
10805691
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk