Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 May 15;20(10):3714-24.

Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus.

Author information

  • 1Zentrum für Molekulare Biologie, University of Heidelberg, D-69120 Heidelberg, Germany.

Erratum in

  • J Neurosci 2000 Nov 1;20(21):8227.

Abstract

The transcription factors neuronal helix-loop-helix protein (NEX)/mammalian atonal homolog 2 (Math-2), BETA2/neuronal determination factor (NeuroD), and NeuroD-related factor (NDRF)/NeuroD2 comprise a family of Drosophila atonal-related basic helix-loop-helix (bHLH) proteins with highly overlapping expression in the developing forebrain. The ability of BETA2/NeuroD and NDRF to convert ectodermal cells into neurons after mRNA injection into Xenopus oocytes suggested a role in specifying neuronal cell fate. However, neuronal bHLH genes are largely transcribed in CNS neurons, which are fully committed. Here we analyze a defect in mice lacking BETA2/NeuroD, and in NEX*BETA2/NeuroD double mutants, demonstrating that bHLH proteins are required in vivo for terminal neuronal differentiation. Most strikingly, presumptive granule cells of the dentate gyrus are generated but fail to mature, lack normal sodium currents, and show little dendritic arborization. Long-term hippocampal slice cultures demonstrate secondary alterations of entorhinal and commissural/associational projections. The primary developmental arrest appears to be restricted to granule cells in which an autoregulatory system involving all three neuronal bHLH genes has failed.

PMID:
10804213
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk