Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Invest Radiol. 2000 May;35(5):325-30.

A physical model for dual-energy X-ray absorptiometry--derived bone mineral density.

Author information

  • Bone Research Group, UKK Institute, Tampere, Finland. llhasi@uta.fi

Abstract

RATIONALE AND OBJECTIVES:

Dual-energy X-ray absorptiometry (DXA)-derived areal bone mineral density (BMD) is an established predictor of osteoporotic fractures and reflects bone strength as well. The goal of this study was to develop and validate a physical model for appropriate interpretation of BMD.

METHODS:

DXA and peripheral quantitative computed tomography investigations of the distal tibia (n = 45), proximal tibia (n = 12), distal femur (n = 26), and distal radius (n = 34) were carried out. The DXA-derived BMD was analytically modeled as a nonlinear function of volumetric bone mineral apparent density and the cross-sectional area (eCSA) of given bone; ie, BMD(mod) = apparent BMD x square root of eCSA.

RESULTS:

At every measured skeletal site, the relationship between BMD and BMD(mod) was systematically stronger than that observed separately between BMD and apparent BMD or cross-sectional area. The models (r2) explained 85%, 94%, 87%, and 74% of the variability in BMD at the distal tibia, proximal tibia, distal femur, and distal radius, respectively.

CONCLUSIONS:

The mutual contributions of bone density and size to BMD can vary to some extent in a site-dependent fashion. This dual nature of BMD on one hand provides a reasonable mechanical explanation for why BMD is a good surrogate of bone strength and a predictor of osteoporotic fractures but on the other hand, complicates its detailed interpretation.

PMID:
10803674
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk