Send to

Choose Destination
See comment in PubMed Commons below
J Nutr. 2000 May;130(5):1225-31.

The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats.

Author information

  • 1German Institute of Human Nutrition Potsdam-Rehbrücke, Department of Gastrointestinal Microbiology, 14558 Bergholz-Rehbrücke, Germany.


Pectin is a soluble indigestible polysaccharide that stimulates cecal polyamine formation in rats. Bacteroides and fusobacteria, two numerically dominant bacterial population groups in the large intestine, were found to synthesize in vitro high amounts of spermidine and putrescine. The purpose of this study was to elucidate the effect of pectin on the polyamine production by defined bacterial species in vivo. Germfree male Wistar rats (n = 18) were randomly assigned to one of three treatments: (i) monoassociation with Bacteroides thetaiotaomicron + fiber-free diet; (ii) diassociation with B. thetaiotaomicron + Fusobacterium varium + fiber-free diet or (iii) diassociation with B. thetaiotaomicron + F. varium + fiber-free diet + 10% pectin. The cecal contents of monoassociated rats fed fiber-free diet contained large amounts (1.51+/-0.21 micromol/dry total cecum content) of spermidine which was the major polyamine. The cecum of diassociated rats fed the fiber-free diet contained even higher concentrations of spermidine (2.53+/-0.21 micromol/dry total cecum content) and also putrescine, which was now the dominant polyamine (putrescine 0.32+/-0.28 vs. 3.01+/-0.28 micromol/dry total cecum content; monoassociation vs. diassociation). Pectin consumption by diassociated rats led to an additional increase in the cecal concentrations of all polyamines: putrescine, spermidine and spermine were 40, 37 and 100%, respectively, higher in the diassociated rats consuming the pectin diet than in those consuming the pectin-free diet. Since the microbial counts in the cecum did not differ in the diassociated treatment groups, the elevated concentrations of polyamines observed in the pectin group must have been due to stimulated bacterial polyamine synthesis. The decline of individual polyamines from cecum to feces detected at the end of the study in all treatment groups and the high microbial counts in the cecum and in feces suggest that bacterial polyamines are absorbed in cecum and colon. Pectin stimulates intestinal microbes to synthesize large amounts of polyamines which may be utilized by the host.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk