Production of recombinant L-leucine dehydrogenase from Bacillus cereus in pilot scale using the runaway replication system E. coli[pIET98]

Biotechnol Bioeng. 2000 Jun 5;68(5):557-62.

Abstract

A method for the production of recombinant L-leucine dehydrogenase from Bacillus cereus in pilot scale is described employing the temperature induced runaway replication vector pIET98 and the Escherichia coli host strain BL21. Fed-batch cultivation using a semi-synthetic high-cell densitiy medium was adjusted in 5-L scale to yield a constant growth rate of 0,17 h(-1) and a final cell concentration of 27 g dry weight/L by exponentially increasing the nutrient supply. Runaway replication and thus, LeuDH expression was induced during the feeding phase by increasing the cultivation temperature to 41 degrees C yielding a specific enzyme activity of 110 U/mg, which corresponds to 30% of the soluble cell protein. The cultivation was terminated when the dissolved oxygen content fell below 10% saturation. The final volume activity was 600,000 U/L cultivation. No change in growth, cell density, or expression activity was observed scaling up the cultivation volume to 200 L. Thus, 120,000,000 units L-leucine dehydrogenase were obtained from one cultivation. The purification of L-leucine dehydrogenase to homogeneity was carried out by heat denaturation, liquid-liquid extraction, gel filtration, and anion-exchange chromatography to give pure enzyme in 65% yield. The integrity of the recombinant enzyme was tested measuring the molecular weight and determining the N-terminal amino acid sequence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetates / metabolism
  • Amino Acid Oxidoreductases / biosynthesis*
  • Amino Acid Oxidoreductases / isolation & purification
  • Bacillus cereus / enzymology*
  • Cell Division
  • Culture Media
  • DNA Replication
  • Escherichia coli / genetics*
  • Leucine Dehydrogenase
  • Molecular Weight
  • Oxygen / metabolism
  • Pilot Projects
  • Protein Engineering / methods
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / isolation & purification
  • Sequence Analysis, Protein
  • Time Factors

Substances

  • Acetates
  • Culture Media
  • Recombinant Proteins
  • Amino Acid Oxidoreductases
  • Leucine Dehydrogenase
  • Oxygen