Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2000 Apr 6;404(6778):588-90.

Functional hydrogel structures for autonomous flow control inside microfluidic channels

Author information

  • 1The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana 61801, USA. dbeebe@engr.wisc.edu

Abstract

Hydrogels have been developed to respond to a wide variety of stimuli, but their use in macroscopic systems has been hindered by slow response times (diffusion being the rate-limiting factor governing the swelling process). However, there are many natural examples of chemically driven actuation that rely on short diffusion paths to produce a rapid response. It is therefore expected that scaling down hydrogel objects to the micrometre scale should greatly improve response times. At these scales, stimuli-responsive hydrogels could enhance the capabilities of microfluidic systems by allowing self-regulated flow control. Here we report the fabrication of active hydrogel components inside microchannels via direct photopatterning of a liquid phase. Our approach greatly simplifies system construction and assembly as the functional components are fabricated in situ, and the stimuli-responsive hydrogel components perform both sensing and actuation functions. We demonstrate significantly improved response times (less than 10 seconds) in hydrogel valves capable of autonomous control of local flow.

PMID:
10766238
[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk