Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2000 Apr;278(4):F540-53.

Urothelial pathophysiological changes in feline interstitial cystitis: a human model.

Author information

  • 1Department of Urology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.


Unique barrier properties of the urothelial surface membrane permit urine storage. Interstitial cystitis causes disabling dysuria, and frequency. Similarly, feline interstitial cystitis (FIC) occurs in cats. These studies define the permeability and structural properties of normal and FIC urothelium. To determine the effects of bladder filling, groups were studied before and after hydrodistention. Normal urothelium with or without hydrodistention exhibited high transepithelial resistances (TER) and low water and urea permeabilities, resembling other species. Fluorescence confocal microscopy revealed localization of the marker AE-31 to the apical surface of all umbrella cells in normal urothelium, with the tight junction protein ZO-1 localized to tight junctions. Scanning and transmission electron microscopy revealed uniform distribution of luminal cells with characteristic apical membrane and tight junction morphology. Urothelium in FIC animals displayed reduced TER and increased water and urea permeability following hydrodistention. Structural studies in FIC revealed denuded urothelium, with appearance of AE-31 in underlying epithelial cells. The results demonstrate severe epithelial damage and dysfunction in FIC and suggest novel approaches toward examining the etiology and therapy of IC.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk