Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Jun 2;275(22):16885-90.

N-Methyl-D-aspartate receptor stimulation activates tyrosinase and promotes melanin synthesis in the ink gland of the cuttlefish Sepia officinalis through the nitric Oxide/cGMP signal transduction pathway. A novel possible role for glutamate as physiologic activator of melanogenesis.

Author information

  • 1Zoological Station "Anton Dohrn," Villa Communale, 80121 Naples and the Departments of Zoology and Organic and Biological Chemistry, University of Naples Federico II, 80134 Naples, Italy.

Abstract

The tyrosinase-catalyzed conversion of l-tyrosine to melanin represents the most distinctive biochemical pathway in the ink gland of the cuttlefish Sepia officinalis; however, the molecular mechanisms underlying its activation have remained so far largely uncharted. In this paper we demonstrate for the first time that l-glutamate can stimulate tyrosinase activity and promote melanin synthesis in Sepia ink gland via the N-methyl-d-aspartate (NMDA) receptor/NO/cGMP signal transduction pathway. Incubation of intact ink glands with either l-glutamate or NMDA resulted in an up to 18-fold increase of tyrosinase activity and a more than 6-fold elevation of cGMP levels. Comparable stimulation of tyrosinase was induced by an NO donor and by 8-bromo-cGMP. An NMDA receptor antagonist, NO synthase (NOS) inhibitors, and a guanylate cyclase blocker suppressed NMDA-induced effects. Immunohistochemical evidence indicated that enhanced cGMP production was localized largely in the mature part of the ink gland. Increased de novo synthesis of melanin was demonstrated in NMDA- and NO-stimulated ink glands by a combined microanalytical approach based on spectrophotometric determination of pigment levels and high performance liquid chromatography quantitation of pyrrole-2,3, 5-tricarboxylic acid, a specific melanin marker, in melanosome-containing fractions. These results fill a longstanding gap in the understanding of the complex biochemical mechanisms underlying activation of melanogenesis in the mature ink gland cells of S. officinalis and disclose a novel physiologic role of the excitatory neurotransmitter glutamate mediated by the NMDA receptor/NO/cGMP signaling pathway.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk